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Nanoscale and microscale confinement of biopolymers naturally occurs in cells and has been recently
achieved in artificial structures designed for nanotechnological applications. Here, we present an extensive
theoretical investigation of the conformations and shape of a biopolymer with varying stiffness confined to a
narrow channel. Combining scaling arguments, analytical calculations, and Monte Carlo simulations, we iden-
tify various scaling regimes where master curves quantify the functional dependence of the polymer confor-
mations on the chain stiffness and strength of confinement.
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What is the effect of confinement on the shape of a
biopolymer? With recent advances in visualizing and ma-
nipulating macromolecules on ever shrinking length scales,
an answer to this question has gained increasing importance.
In the crowded environment of a cell the conformations of
cytoskeletal filaments are highly constrained by other neigh-
boring macromolecules. This confinement largely alters the
viscoelastic response of entangled biopolymer solutions
�1,2�. There is growing interest in manufacturing nanostruc-
tures such as nanopores �3� and nanochannels �4,5� for in-
vestigating and manipulating DNA with improved technolo-
gies aiming toward smaller and smaller structures. Hence an
improved understanding of the effect of confinement on
biopolymer conformations has potential implications for the
design of nanoscale devices in biotechnological applications.
Similarly, microfluidic devices have been used to explore
confinement effects on actin filaments and DNA �6,7�. What
makes the confinement of biopolymers both a challenging
and interesting problem is that biopolymers, unlike their syn-
thetic counterparts, are generally stiff on a length scale much
larger than their monomer size. The persistence length �p,
the scale below which bending energy dominates over ther-
mal fluctuations, is approximately 50 nm for DNA �8� and
16 �m for F-actin �9�. Depending on whether the contour
length L is smaller or larger than the persistence length we
may distinguish between stiff and flexible chains.

For cellular systems as well as for nanoscale devices,
biopolymers are confined on length scales comparable with
their persistence length �p such that the polymer’s intrinsic
bending stiffness plays a decisive role for its conformations.
For simplicity, consider a cylindrical tube of diameter d.
Upon balancing the bending stiffness of a chain with thermal
energy, Odijk �10� has identified a length Ld measuring the
typical distance between successive deflections of the chain,
Ld

3�d2�p; see Fig. 1. This suggests to use the number of
collisions c=L /Ld per filament length L as a natural dimen-
sionless parameter to measure the strength of confinement
and �=L /�p to measure the flexibility of a polymer. The
physics in the strong confinement regime �c�1� is genu-
inely different from the regime where the radius of gyration
RG of a long flexible chain �with L��p� becomes compa-

rable to d. In the latter case of weak confinement of a flexible
chain the shape of the polymer is distorted due to self-
avoidance between distant segments along the polymer
chain. Then, according to de Gennes’ blob picture �11�, we
may represent the conformation of the polymer as a linear
chain of nonpenetrating spheres of radius d, where each
sphere is described by Flory’s theory. This picture results in
the following scaling law for an extension of the polymer
along the tube axis:

R� � L��p/d�2/3. �1�

For strong confinement the Odijk length becomes the analog
of the blob size, below which the polymer may be considered
as free. Thus the fraction of contour length stored in thermal
undulations decreases with decreasing tube dimensions �10�:

�L − R��/L � Ld/�p. �2�
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FIG. 1. �Color online� Scaling regimes for confined biopolymer
conformations as a function of polymer flexibility �=L /�p and con-
finement strength c=L /Ld. In the flexible regime ���1� two scal-
ing regimes are known �dark gray �red��: free coil behavior for
weak confinement and de Gennes scaling for intermediate confine-
ment. In the parameter range most relevant for biopolymers �light
gray �green��, one has to distinguish between weak confinement of
stiff polymers and strong confinement for chains of arbitrary
stiffness.
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This scaling law should apply equally well for stiff and flex-
ible chains as long as the collision parameter c is sufficiently
large. For flexible chains, ��1, this is the case if the deflec-
tion length Ld is less than the persistence length �p. For stiff
chains, ��1, the deflection length has to become smaller
than the total filament length before there is any stretching.
There is an additional regime of weak confinement �d�L
�Ld� where the average orientation of the filament becomes
aligned with the tube axis. These various scaling scenarios
are summarized in Fig. 1.

The purpose of this Rapid Communication is to go be-
yond this qualitative scaling picture and provide a quantita-
tive study of the conformations of biopolymers in confined
geometry. Our focus is on the parameter range that is most
relevant for cellular systems and nanoscale devices �light
gray �green� region in Fig. 1�, where self-avoidance effects
may safely be neglected. For specificity, we consider a
wormlike chain in a soft harmonic potential of cylindrical
symmetry and strength �. Indeed, the harmonic potential is
the simplest model to represent a tubelike confinement and it
has the advantage of being amenable to analytic calculations.
Thus the Hamiltonian for the contour r�s� parametrized in
terms of the arclength s reads

H�r�s�� =
�

2
�

0

L

ds� �2r�s�
�s2 	2

+
�

2
�

0

L

dsr�
2 �s� , �3�

where �=�pkBT is the bending stiffness and r�= �x ,y� are
the components of the contour perpendicular to the tube axis.

A variety of analytical results have been obtained so far
for unconfined wormlike chains. For instance, the tangent-
tangent correlation functions �12� and moments of the end-
to-end distributions have been calculated exactly �13,14�.
Further results like the probability distribution function of
the end-to-end distance R have been calculated for stiff
chains �15� within the weakly bending rod �WBR� approxi-
mation, where one considers only small transverse bending
fluctuations with respect to a straight countour r�s�

 (r��s� ,s). For confined chains the WBR limit amounts to
assume that the filament is aligned with the tube axis, and
may be employed to study the asymptotic regime of strong
confinement, Ld�L. Then, using the equipartition theorem
one obtains for the correlation function of the transverse un-
dulations in Fourier space:

�x�k�x�− k�� =
kBT

��k4 + 4Ld
−4�

, �4�

where Ld= �4� /��1/4. This simple result forms the basis for
all subsequent analytical calculations. For example, it im-
plies that the local transverse mean-square displacement is
given by �r�

2 �=Ld
3 /4�p.

In general, however, analytical calculations are not fea-
sible. In order to investigate the full range of parameters we
employed a standard Monte Carlo �MC� scheme using a dis-
cretized version of the wormlike chain model. This allows us
to go beyond the WBR limit and calculate a range of observ-
ables which are directly accessible in single-molecule experi-
ments. The polymer was represented by a chain of N seg-

ments ti approximating the continuous contour. The
inextensibility constraint was imposed along the whole poly-
mer by fixing the segments length to the value L /N. The
cylindrical symmetric harmonic potential was calculated at
the end points of each segment.

During the simulation, both ends of the polymer were
assumed to be completely free, in both position and orienta-
tion. The initial configuration was chosen sufficiently close
to full stretching, in order to ensure a fast convergence of the
MC algorithm. A new configuration was generated by chang-
ing the orientation of a randomly chosen segment and ac-
cepted according to the standard Metropolis algorithm. We
have not considered effects resulting from self-avoidance,
which is not important for strong confinement and in the stiff
limit, and is negligible even in the flexible limit if the num-
ber of segments is below N
500. At least 106 MC steps per
segment were performed, to obtain averages and statistical
errors. Our MC procedure was validated by evaluating
known quantities for polymers in bulk �16�.

In a typical experimental setup measuring the shape of a
biopolymer in confined geometry, the filaments are labeled
with some fluorescent dye and recorded over the time reso-
lution window of the camera. This results in an intensity
profile for the emitted light that corresponds, in our theoret-
ical model, to the marginal probability distribution function
of the positions of the constituent segments in a plane con-
taining the tube axis. Figure 2 shows this function as ob-
tained from our MC simulations for intermediate values of
the collision and stiffness parameters: c=4 and �=2. This
picture nicely illustrates the shape of a biopolymer in con-
fined geometry. Given sufficient experimental resolution it
may even be possible to resolve the bimodality of the distri-
bution clearly visible in the MC data.

Beyond such a qualitative impression of the shape of the
polymer, other more quantitative measures may characterize
better its conformations. We start our discussion with the
tangent-tangent correlation function ��s�= �t�s� · t�0.5��,
measured from the center of the filament. Figure 2 shows the
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FIG. 2. �Color online� Left: marginal probability distribution
function of polymer configurations in a plane containing the tube
axis for c=4 and �=2. The probability density increases from dark
to light colors. Right: normalized tangent-tangent correlation func-
tion ��s�= �t�s� · t�0.5�� for �=0.1 and various confinements ranging
from c=3 to c=20. MC simulations are represented by symbols,
whereas the solid lines show the analytical approximations of ��s�
as from Eq. �5�. Dashed line: exponential decay of an unconfined
chain.
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results of our MC simulations in the stiff regime for �=0.1
and a range of collision parameters c. For small c the data
show the expected exponential decay of a free filament. For
c�1 confinement effects become visible and deflections
start to affect the correlations for distances comparable to the
Odijk length scale 1 /c. For strong confinement, ��s�, after
an initial exponential decay and a shallow minimum at
s−0.5
1/c, reaches a broad plateau before correlations de-
cay again in a small boundary layer of size 1/c. All these
features, but the boundary layer effect, are well captured by a
formula �solid line in Fig. 2� easily obtained in the WBR
approximation from Eq. �4�:

�t�s� · t�s��� = 1 −
�

2c

�2 exp�−

�s − s��
L

c	
�sin� �s − s��

L
c −

	

4
	 + 1� . �5�

The quantity which best characterizes the elongation of
the polymer is the mean-square end-to-end distance �R2�. As
already noted, this is exactly known for unconfined chains,
�R2�0=2L2�−2��−1+e−��, but can be calculated for strong
confinement in the WBR approximation. We find

�R2�c

L2 = 1 −
�

2c
�1 +

1

c2
1 − �2e−c sin�c +
	

4
	�� . �6�

The validity of this formula, obtained in the WBR limit,
extends to the case of weak confinement: this result correctly
recovers the exact result for unconfined chains in the stiff
limit. Upon defining the reduced end-to-end distance


R2�c� = ��R2�c − �R2�0�/�L2 − �R2�0� , �7�

one finds that this quantity is a function of the collision pa-
rameter c only. This suggests to look for a data collapse in
the MC data. In fact, as can be inferred from Fig. 3, the
reduced end-to-end distance is a function of the collision
parameter only once the flexibility parameter falls below �

1—i.e., in the stiff regime. This implies that there is a

single master curve characterizing the shape of a stiff poly-
mer.

The analytical results capture the MC results only in the
limit of very strong confinement. This is due to the fact that
the WBR approximation assumes the filament to be perfectly
aligned with the tube axis, which is strictly valid only if
c�1. In the regime of weak confinement the primary effect
of the geometric constraints is to align the filament with the
tube axis. We expect this alignment to start once the filament
length �more precisely the end-to-end distance� becomes
comparable with the tube diameter—i.e., for c3��. To ren-
der this statement quantitative we define the orientational
order parameter

S =
1

2
�3�cos2�� − 1� , �8�

where � is the angle of R with respect to the tube axis. In
fact, as can be inferred from the inset of Fig. 3, there is an
intermediate confinement regime where the onset of orienta-
tional order precedes filament elongation. This has important
implications for the confinement of biopolymers like F-actin
and microtubules in artificial channels and cellular systems.
For instance, one estimates that for F-actin with L=2 �m
this window in tube dimensions ranges from d=2 �m down
to d
0.4 �m. In this window the free energy cost for con-
finement will not be given by the Odijk estimate F�kBTc
but by the constraint on the orientational degrees of
freedom—i.e., F�kBT ln�L /d�. This intermediate regime be-
comes less pronounced with increasing flexibility. Actually,
even very long �self-avoiding� polymers are known to have
an instantaneous prolate shape �17,18�. This anisotropy in the
radius of gyration tensor is rather due to entropy effects �19�
than the energy of bending as for stiff biopolymers discussed
here. Despite the different physical origin its consequences
are that also flexible polymers in confinement orient first
before changing their shape �20�.

For flexible polymers, with ��1, the initial effect of con-
finement is to increase R� but decrease R. There is a clear dip
in 
R2, which can be explained by the following geometric
argument. Consider an initially randomly oriented end-to-
end vector R. Then weak confinement will predominantly
reduce the magnitude of the component of this vector per-
pendicular to the tube axis but leave the parallel component
unchanged. This obviously leads to a decrease in the magni-
tude of the end-to-end distance. We have checked this argu-
ment by measuring the projection of the mean-square end-
to-end distance onto the tube axis �data not shown�, which
indeed does not show an initial decrease but increases mono-
tonically. A dip in the radius of gyration RG �not the end-to-
end distance� has previously been reported for very long
���1� self-avoiding polymers �20�. There it was argued to
be a consequence of an intermediate regime, where the prin-
cipal components of the radius of gyration tensor are reduced
before confinement excluded-volume effects lead to an in-
crease in RG.

In the limit of strong confinement, where the Odijk de-
flection length is either much smaller than the total length
�for stiff polymers� or much smaller than the persistence
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FIG. 3. Reduced mean-square end-to-end distance 
R2 as a
function of the collision parameter c for a series of flexibilities �
indicated in the graph. The universal scaling curve �solid line� as-
ymptotes the analytical result �long-dashed line� in the limit of
strong confinement. Short-dashed lines are guides to the eye for �
�1. Inset: orientational order parameter S as a function of c for �
=0.01, 0.1, 1, 10.
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length �for flexible polymers�, one expects �R2� to become
independent of the filament length. In order to show this
explicitly we have replotted our MC data in Fig. 4 as a func-
tion of the number of collisions within a persistence length,
c /�=�p /Ld. Indeed, all curves for different flexibilities
merge into a master curve for strong confinement. In contrast
to the master curve for weak confinement, which applies
only for stiff chains, this master curve captures all chain
flexibilities. The numerical result asymptotes the analytical
formula obtained in the WBR limit, but only for c /� quite
large. This shows that for intermediate confinement the ori-
entation and the less constrained ends of the filament con-

tribute significantly to the conformations; both of these ef-
fects are neglected in the WBR limit.

Advances in microfabrication and nanofabrication tech-
nologies have made it possible to confine biopolymers to
topographical structures whose dimensions are comparable
to or even smaller than their persistence length. This opens a
range of novel possibilities to visualize and manipulate DNA
and cytoskeletal filaments. Here, we have presented an ex-
tensive theoretical analysis of the shape and conformations
of biopolymers resulting from strong confinement and iden-
tified and quantified a range of novel scaling regimes. We
make specific predictions for experimentally accessible
quantities like the density profile or the orientation and ap-
parent length of a biopolymer in a channel. Our calculations
may provide a road map for a clear identification of the
possible scaling scenarios involved in the manufacture of
nanofluidic and microfluidic devices. At the same time, our
analysis is a first step toward a quantitative master curve
connecting the apparent length and the actual length of DNA
in nanochannels, which has important implications for ex-
perimental realizations aimed at a rapid screening of entire
genomes in contrast to gel electrophoresis. Finally, they shed
some light on the effect of cellular crowding on the confor-
mation of cytoskeletal filaments.
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